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Abstract

The steady mixed convection boundary layer flow of a micropolar fluid about a sphere with a constant surface temperature is considered for
both the assisting and opposing flow cases. The transformed conservation equations of the non-similar boundary layers are solved numerically
using a very efficient finite-difference method known as the Keller-box scheme. Numerical results are presented for different values of the
material and mixed convection parametersK andλ, respectively, and with the Prandtl numberPr = 0.7 and 7. It is found that assisting flow
(λ > 0) delays separation of the boundary layer and can, if the assisting flow is strong enough, suppress it completely. The opposing flow
(λ < 0), on the other hand, brings the separation point nearer to the lower stagnation point of the sphere and for sufficiently strong opposing
flows there will not be a boundary layer on the sphere. Some results were given in the form of tables. Such tables are very important and they
can serve as a reference against which other exact or approximate solutions can be compared in the future.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Keywords: Micropolar fluid; Mixed convection; Boundary layer; Isothermal sphere; Numerical results

1. Introduction

The theory of micropolar fluids proposed by Eringen [1,
2] deals with the class of fluids which exhibit certain mi-
croscopic effects arising from the local structure of the mi-
cromotions of the fluid elements. This theory has recently
received considerable attention because of its applications in
a number of processes that occur in industry. Such applica-
tions include the extrusion of polymer liquids, solidification
of liquid crystals, cooling of a metallic plate in a bath, ferro
liquids, etc. Physically, the micropolar fluid can consist of a
suspension of small rigid cylindrical elements such as large
dumbbell-shaped molecules. The theory of micropolar fluid
is generating a very much increased interest and many clas-
sical flows are being re-examined to determine the effects
of the fluid microstructure. A detailed review made by Ari-
man et al. [3] and the recent papers by Gorla [4], Gorla et
al. [5], Bhattacharyya and Pop [6], Hossain and Chowdhury
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[7], Rees and Bassom [8], Rees and Pop [9], Hossain et al.
[10–12] and Nazar et al. [13–15] clearly show the fast devel-
opment of the theory of the micropolar fluid.

Of more interest to the present work are the papers by
Lien and Chen [16] who have studied the steady mixed
convection boundary layer flow of a micropolar fluid about
a permeable sphere and Wang and Kleinstreuer [17] who
generalized the paper by Lien and Chen [16] to two-
dimensional axisymmetric bodies with porous walls and
constant surface temperature or heat flux. Lien and Chen
[16] have used the Mangler transformation and potential
outer flow velocity, while Wang and Kleinstreuer [17]
have introduced a new coordinate transformation to reduce
the streamwise dependence in the coupled boundary layer
equations. However, these authors have introduced three
material parameters.

The purpose of this paper is to analyze the steady mixed
convection boundary layer flow of a micropolar fluid past a
sphere subjected to a constant surface temperature. In the
analysis, the governing boundary layer equations are first
transformed into a non-dimensional form, which contain
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Nomenclature

a radius of the sphere . . . . . . . . . . . . . . . . . . . . . . . m
Cf local skin friction coefficient
f reduced stream function
g acceleration due to gravity . . . . . . . . . . . . . m·s−2

Gr Grashof number
h reduced angular velocity of micropolar fluid
H non-dimensional angular velocity of micropolar

fluid
j microinertia per unit mass . . . . . . . . . . . . . . . . m2

k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

K material parameter
Pr Prandtl number
Qw(x) local heat transfer coefficient
r(x) radial distance from symmetrical axis to surface

of the sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Re Reynolds number
T fluid temperature . . . . . . . . . . . . . . . . . . . . . . . . . K
u,v non-dimensional velocity components alongx

andy directions, respectively
ue(x) non-dimensional velocity outside

boundary layer
U∞ free stream velocity . . . . . . . . . . . . . . . . . . . m·s−1

x, y non-dimensional Cartesian coordinates along
the surface of the sphere and normal to it,
respectively

Greek symbols

β thermal expansion coefficient . . . . . . . . . . . . K−1

γ spin gradient viscosity . . . . . . . . . . . . . kg·m·s−1

κ vortex viscosity . . . . . . . . . . . . . . . . . kg·m−1·s−1

λ mixed convection parameter
µ dynamic viscosity . . . . . . . . . . . . . . . kg·m−1·s−1

ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

θ non-dimensional temperature
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

ψ non-dimensional stream function

Superscripts
′ differentiation with respect toy
� dimensional variables

Subscripts

w condition at the wall
∞ ambient condition

only the material parameterK and the mixed convection
parameterλ, with λ > 0 (Tw > T∞) for a heated sphere
and λ < 0 (Tw < T∞) for a cooled sphere, respectively.
For small values of|λ| forced convection effects dominate,
while for large values of|λ| it is the natural convection,
which is important, so that values of|λ|of O(1), where both
effects are comparable, are of most interest. These equations
are then solved numerically using the Keller-box method
[18]. The effects of the material and mixed convection
parameters on the local skin friction and local heat transfer
coefficients as well as on the variation of the boundary layer
separation point are illustrated through tables and graphs.
The results are presented for the Prandtl numberPr = 0.7
and 7 (liquid water with polymeric molecules), respectively.
Hence this paper is an extension of the previous work on
this problem. It is shown that for a heated sphere (λ > 0) the
separation of the boundary layer is delayed for each value
of K considered, and it is found that there is a value of
λ = λK for which the boundary layer does not separate at
all. On the other hand, the buoyancy forces retard the fluid
and therefore the position of the boundary layer separation
is brought nearer to the lower stagnation point of the sphere.
A unique value ofλ = λK is found for each given value of
K for which the boundary layer separates at this point. For
values ofλ less thanλK a boundary layer solution is not
possible.

Finally, it is worth mentioning that the present results
for K = 0 (Newtonian fluid) are in agreement with those
obtained recently by Nazar et al. [19].

2. Basic equations

Consider the steady mixed convection boundary layer
flow about an impermeable sphere of radiusa which is
placed in a micropolar fluid flow with the undisturbed free
stream velocityU∞, and the constant temperatureT∞. The
convective forced flow is assumed to be moving upward,
while the gravity vectorg acts downward in the opposite
direction as shown in Fig. 1, where the coordinatesx̄

and ȳ are chosen such thatx̄ measures the distance along
the surface of the sphere from the lower stagnation point
and ȳ measures the distance normal to the surface of the
sphere, respectively. It is assumed that the surface of the
sphere is maintained at a constant temperatureTw with

Fig. 1. Physical model and coordinate system.
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Tw > T∞ corresponding to a heated sphere (aiding flow) or
Tw < T∞ corresponding to a cooled sphere (opposing flow),
respectively.

If ū and v̄ are the velocity components alongx̄ and ȳ

axes,�H is the microrotation component normal to thex̄ − ȳ

plane andT is the fluid temperature, the equations which
govern the boundary layer flow are

∂

∂x̄
(r̄ū)+ ∂

∂ȳ
(r̄ v̄) = 0 (1)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ

= ūe
dūe

dx̄
+

(
µ + κ

ρ

)
∂2ū

∂ȳ2

+ gβ(T − T∞)sin

(
x̄

a

)
+ κ

ρ

∂ �H
∂ȳ

(2)

ρj

(
ū
∂ �H
∂x̄

+ v̄
∂ �H
∂ȳ

)
= −κ

(
2�H + ∂ū

∂ȳ

)
+ γ

∂2 �H
∂ȳ2 (3)

ū
∂T

∂x̄
+ v̄

∂T

∂ȳ
= ν

Pr

∂2T

∂ȳ2 (4)

subject to the boundary conditions:

ū = v̄ = 0, T = Tw, �H = −1

2

∂ū

∂ȳ
on ȳ = 0 (5a)

ū → ūe(x̄), �H → 0, T → T∞ asȳ → ∞ (5b)

Hereg is the magnitude of the acceleration due to gravity,
β is the thermal expansion coefficient,ν is the kinematic
viscosity,Pr is the Prandtl number,r̄(x̄) is the radial distance
from the symmetrical axis to the surface of the sphere and
ūe(x̄) is the local free stream velocity. These are given by

r̄(x̄) = a sin(x̄/a), ūe(x̄) = 3

2
U∞ sin(x̄/a) (6)

and we assume thatγ = (µ + (κ/2))j .
The following non-dimensional variables are now intro-

duced

x = x̄/a, y = Re1/2(ȳ/a)

r(x) = r̄(x̄)/a, u = ū/U∞
v = Re1/2(v̄/U∞), ue(x) = ūe(x̄)/U∞

H = (a/U∞)Re−1/2 �H, θ = T − T∞
Tw − T∞

(7)

whereRe = U∞a/ν is the Reynolds number.
Using (7), the system of Eqs. (1)–(4) take the form

∂

∂x
(ru)+ ∂

∂y
(rv) = 0 (8)

u
∂u

∂x
+ v

∂u

∂y

= ue
due

dx
+ (1+ K)

∂2u

∂y2 + K
∂H

∂y
+ λθ sinx (9)

u
∂H

∂x
+ v

∂H

∂y
= −K

(
2H + ∂u

∂y

)
+

(
1+ K

2

)
∂2H

∂y2
(10)

u
∂θ

∂x
+ v

∂θ

∂y
= 1

Pr

∂2θ

∂y2
(11)

and the boundary conditions (5) become

u = v = 0, θ = 1, H = −1

2

∂u

∂y
ony = 0 (12a)

ue(x) → 3

2
sinx, H → 0, θ → 0 asy → ∞ (12b)

whereλ is the mixed convection parameter andK is the
material parameter which are defined by

λ = Gr

Re2 , K = κ

µ
(13)

with Gr = gβ(Tw − T∞)a3/ν2 being the Grashof number.
It is worth mentioning thatλ > 0 is for assisting flow
(heated sphere) andλ < 0 for opposing flow (cooled sphere),
respectively.

3. Solution

Eqs. (8)–(11) subject to the boundary condition (12)
can be solved numerically using the Keller-box method
described in the book by Cebeci and Bradshaw [18]. This
method has been also very recently used by Nazar et al. [13–
15] for solving some non-similar convective flow problems
of Newtonian and micropolar fluids. Thus, since sinx/x →
1 asx → 0, it is appropriate to introduce the transformation

ψ = xr(x)f (x, y), θ = θ(x, y)

H = xh(x, y)
(14)

whereψ is the stream function defined in the usual way as

u = 1

r

∂ψ

∂y
, v = −1

r

∂ψ

∂x
(15)

Substituting (14) into Eqs. (9)–(11) we get, after some
algebra, the following transformed equations

(1+K)
∂3f

∂y3 +
(

1+ x

sinx
cosx

)
f
∂2f

∂y2

−
(
∂f

∂y

)2

+ 9

4

sinx cosx

x
+ K

∂h

∂y
+ λ

sinx

x
θ

= x

(
∂f

∂y

∂2f

∂x∂y
− ∂f

∂x

∂2f

∂y2

)
(16)

(
1+ K

2

)
∂2h

∂y2 +
(

1+ x

sinx
cosx

)
f
∂h

∂y

− ∂f

∂y
h− K

(
2h+ ∂2f

∂y2

)

= x

(
∂f

∂y

∂h

∂x
− ∂f

∂x

∂h

∂y

)
(17)

1

Pr

∂2θ

∂y2 +
(

1+ x

sinx
cosx

)
f
∂θ

∂y

= x

(
∂f

∂y

∂θ

∂x
− ∂f

∂x

∂θ

∂y

)
(18)
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and the boundary conditions (12) become

f = 0,
∂f

∂y
= 0, θ = 1, h = −1

2

∂2f

∂y2 ony = 0

(19a)
∂f

∂y
→ 3

2

sinx

x
, h → 0, θ → 0 asy → ∞ (19b)

We notice that at the lower stagnation point of the sphere,
x ≈ 0, Eqs. (16)–(18) reduce to

(1+ K)f ′′′ + 2ff ′′ − f ′2 +Kh′ + λθ + 9

4
= 0 (20)(

1+ K

2

)
h′′ + 2fh′ − f ′h − K

(
2h+ f ′′) = 0 (21)

1

Pr
θ ′′ + 2f θ ′ = 0 (22)

subject to the boundary conditions

f (0) = f ′(0) = 0, θ(0)= 1

h(0) = −1

2
f ′′(0)

(23a)

f ′ → 3

2
, h → 0, θ → 0 asy → ∞ (23b)

where primes denote differentiation with respect toy.
The physical quantities of primary interest are the local

skin friction coefficient,Cf , and the local wall heat transfer
coefficient ,Qw, which are defined as

Cf = a

U∞
Re−1/2

[
(µ + κ)

∂ū

∂ȳ
+ κ �H

]
ȳ=0

Qw = − a

k(Tw − T∞)
Re−1/2

(
∂T

∂ȳ

)
ȳ=0

(24)

Using the non-dimensional variables (7), we have

Cf = x

(
1+ K

2

)(
∂2F

∂y2

)
y=0

, Qw(x) = −
(
∂θ

∂y

)
y=0

(25)

We notice that forλ > 0, an asymptotic solution of
Eqs. (20)–(22) for large values ofλ (
 1) can be determined
if we make the transformation

f (y)= λ1/4F(η), h = λ3/4H(y)

θ(y) = G(η), η = λ1/4y
(26)

Substituting (26) into Eqs. (20)–(22) these reduce to

(1+ K)F ′′′ + 2FF ′′ − F ′2 + KH ′ + G + 9

4
λ−1 = 0 (27)(

1+ K

2

)
H ′′ + 2FH ′ − F ′H − Kλ−1/2(2H + F ′′) = 0

(28)
1

Pr
G′′ + 2FG′ = 0 (29)

subject to the boundary conditions

F(0) = F ′(0) = 0, G(0) = 1

H(0)= −1

2
F ′′(0) (30a)

F ′ → 3

2
λ−1/2, H → 0, G → 0 asη → ∞ (30b)

where primes now denote differentiation with respect toη.
A solution of Eqs. (27)–(29) is sought in the form of

series

F = F0(η)+ λ−1/2F1(η)+ λ−1F2(η)+ · · ·
G = G0(η)+ λ−1/2G1(η)+ λ−1G2(η)+ · · ·
H = H0(η)+ λ−1/2H1(η)+ λ−1H2(η)+ · · ·

(31)

whereF0,H0 andG0 are given by

(1+K)F ′′′
0 + 2F0F

′′
0 − F ′2

0 + KH ′
0 + G0 = 0 (32)(

1+ K

2

)
H ′′

0 + 2F0H
′
0 − F ′

0H0 = 0 (33)

1

Pr
G′′

0 + 2F0G
′
0 = 0 (34)

subject to the boundary conditions

F0(0) = F ′
0(0) = 0, G0(0) = 1

H0(0) = −1

2
F ′′

0 (0)
(35a)

F ′
0 → 0, G0 → 0, H0 → 0 asη → ∞ (35b)

These equations describe the free convection from the
lower stagnation point of an isothermal sphere, see Nazar
et al. [15], while the equations for the functionsFi(η),Hi(η)

andGi(η), i � 1 can be written as

(1+K)F ′′′
i + 2

i∑
j=0

Fi−jF
′′
j

−
i∑

j=0

F ′
i−jF

′
j + KH ′

i + Gi + 9

4
δ2i = 0 (36)

(
1+ K

2

)
H ′′

i + 2
i∑

j=0

Fi−jH
′
j

−
i∑

j=0

F ′
i−jHj − K

(
2Hi + F ′′

i

) = 0 (37)

1

Pr
G′′

i + 2
i∑

j=0

Fi−jG
′
j = 0 (38)

along with the boundary conditions

Fi(0) = F ′
i (0) = 0, G′

i (0)= 0

Hi(0) = −1

2
F ′′
i (0)

(39a)

F ′
i → 3

2
δ1i , Gi → 0, Hi → 0 asη → ∞ (39b)

whereδ1i andδ2i are the Kronecker delta operators. Thus,
we have
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f ′′(0) = λ3/4[F ′′
0 (0)+ λ−1/2F ′′

1 (0)+ λ−1F ′′
2 (0)+ · · ·]

(40a)

−θ ′(0) = λ1/4[G′
0(0)+ λ−1/2G′

1(0)+ λ−1G′
2(0)+ · · ·]

(40b)

for λ 
 1.

4. Results and discussion

Solutions of the system of the non-similar boundary layer
Eqs. (16)–(18) subject to the boundary conditions (19) were
obtained numerically using the Keller-box method along
with the Newton’s linearization technique as described by
Cebeci and Bradshaw [18]. The numerical solution starts at
the lower stagnation point of the sphere,x ≈ 0, with the
initial profiles as given by Eqs. (20)–(22) and proceed round
the sphere up to the separation point. Representative results
for the local skin friction coefficientCf and the local heat
transfer coefficientQw(x) have been obtained at different
positions 0◦ � x � 120◦ for K = 0, 0.5, 1, 1.5, 2, 2.5 and 3
and various values of the mixed convection parameterλ

when Pr = 0.7 and Pr = 7 (liquid water with polymeric
molecules), respectively. It should be noticed that the present
results were obtained up to the value ofx = 120◦, while
those of Lien and Chen [16] terminate atx = 90◦. However,
in order to save space, we will give here results only for
K = 0 and 1.

The values off ′′(0) and −θ ′(0) obtained by numeri-
cally solving Eqs. (20)–(22) subject to the boundary con-
ditions (23) for some values ofλ andK = 0 and 1 are pre-
sented in Table 1 forPr = 0.7 and in Table 2 forPr = 7. The
values obtained from the asymptotic series (40) forλ > 0

and large values ofλ (
 1) are also included in these tables
and these show good agreement with the numerical results
even at moderate values ofλ. We notice that the value of
−G′

0(0) = 0.4576 forK = 0 andPr = 0.7, obtained by solv-
ing Eqs. (32)–(34) subject to the boundary conditions (35),
is in very good agreement with that obtained by Chiang et
al. [20], which is 0.4576. We also mention that the present
results forK = 0, Pr = 0.7 and various values ofλ are in
complete agreement with those reported recently by Nazar
et al. [19]. We are therefore confident that the results pre-
sented in this paper are very accurate.

Further, Tables 3–10 show the values ofCf andQw(x)

for K = 0 and 1 at different positionsx and different values
of λ for Pr = 0.7 and 7, respectively. The variation of
Cf and Qw(x) is also illustrated in Figs. 2–9. It can be
seen from these tables and figures that the values ofCf

are lower while the values ofQw(x) are higher forK = 0
(Newtonian fluid) than forK = 1. It can also be seen
that the values ofCf are lower, while those ofQw(x)are
higher for Pr = 7 than forPr = 0.7 when the parameters
K,x andλ are fixed. It is also seen from these tables and
figures that for the aiding flowCf and Qw(x) increase
as the mixed convection or the buoyancy force increases,
while an opposite trend is observed for opposing flow. Also,
for given values ofK and λ, the heat transfer coefficient
is seen to decrease with the increasing distancex from
the stagnation point. Further, we can see from these tables
and figures, as expected, the boundary layer separates from
the sphere for some negative values ofλ (opposing flow)
and also for some positive values ofλ (assisting flow).
Opposing flow brings the separation point close to the lower
stagnation point and for sufficiently large negative values
of λ or sufficiently strong opposing flow, there will not be
a boundary layer on the sphere. Increasingλ delays the

Table 1
Values off ′′(0) and−θ ′(0) for various values ofλ, K = 0 and 1 forPr = 0.7

λ Numerical(K = 0) Series(K = 0) λ Numerical(K = 1) Series(K = 1)

f ′′(0) −θ ′(0) f ′′(0) −θ ′(0) f ′′(0) −θ ′(0) f ′′(0) −θ ′(0)
−4.7 −0.0081 0.5892 −5.8 −0.0318 0.5444
−4.6 0.0770 0.6011 −5.7 0.0205 0.5534
−4.5 0.1566 0.6117 −5.0 0.3295 0.6014
−4.0 0.5028 0.6534 −4.0 0.6440 0.6418
−3.0 1.0700 0.7108 −3.0 0.9383 0.6770
−2.0 1.5581 0.7529 −2.0 1.2113 0.7064
−1.0 2.0016 0.7870 −1.0 1.4617 0.7312
−0.5 2.2115 0.8021 −0.5 1.5840 0.7427

0.0 2.4151 0.8162 0.0 1.7042 0.7536
1.0 2.8064 0.8463 2.9966 0.9344 1.0 1.9444 0.7745 2.0855 0.8472
2.0 3.1804 0.8648 3.2484 1.0008 2.0 2.1750 0.7935 2.2901 0.8468
3.0 3.5401 0.8857 3.5251 1.0615 3.0 2.3976 0.8109 2.5119 0.8711
4.0 3.8880 0.9050 3.7965 1.1138 4.0 2.6134 0.8271 2.7292 0.8976
5.0 4.2257 0.9230 4.0587 1.1594 5.0 2.8271 0.8425 2.9392 0.9232
6.0 4.5546 0.9397 4.3116 1.2000 6.0 3.0318 0.8568 3.1420 0.9472
7.0 4.8756 0.9555 4.5561 1.2367 7.0 3.2318 0.8702 3.3383 0.9696
8.0 5.1896 0.9704 4.7931 1.2702 8.0 3.4323 0.8833 3.5288 0.9906
9.0 5.4974 0.9846 5.0235 1.3011 9.0 3.6244 0.8954 3.7141 1.0103

10.0 5.7995 0.9981 5.2478 1.3298 10.0 3.8131 0.9070 3.8948 1.0289
20.0 8.5876 1.1077 7.2592 1.5451 20.0 5.5713 1.0029 5.5210 1.1732
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Table 2
Values off ′′(0) and−θ ′(0) for various values ofλ, K = 0 and 1 forPr = 7

λ Numerical(K = 0) Series(K = 0) λ Numerical(K = 1) Series(K = 1)

f ′′(0) −θ ′(0) f ′′(0) −θ ′(0) f ′′(0) −θ ′(0) f ′′(0) −θ ′(0)
−8.3 −0.0065 1.3920 −10.9 −0.0410 1.2630
−8.2 0.0391 1.4057 −10.8 0.0263 1.2838
−8.0 0.1266 1.4313 −10.0 0.2306 1.3566
−7.0 0.4309 1.5006 −8.0 0.6459 1.4847
−6.0 0.7887 1.5917 −6.0 0.8872 1.5399
−5.0 1.1025 1.6631 −5.0 1.0549 1.5834
−4.0 1.3947 1.7251 −4.0 1.2142 1.6226
−3.0 1.6685 1.7795 −3.0 1.3319 1.6483
−2.0 1.9280 1.8281 −2.0 1.4465 1.6726
−1.0 2.1762 1.8723 −1.0 1.5687 1.6986

0.0 2.4151 1.9130 0.0 1.7042 1.7275
1.0 2.6462 1.9508 2.8049 2.0823 1.0 1.8400 1.7559 2.0305 1.9490
2.0 2.8702 1.9862 3.0454 2.0445 2.0 1.9725 1.7826 2.1307 1.8923
3.0 3.0887 2.0195 3.2935 2.0651 3.0 2.1018 1.8081 2.2591 1.8959
4.0 3.3017 2.0509 3.5310 2.0971 4.0 2.2285 1.8323 2.4085 1.9135
5.0 3.5101 2.0808 3.7572 2.1314 5.0 2.3526 1.8555 2.5442 1.9354
6.0 3.7142 2.1093 3.9734 2.1654 6.0 2.4783 1.8786 2.6854 1.9585
7.0 3.9145 2.1365 4.1810 2.1983 7.0 2.5980 1.8999 2.8020 1.9818
8.0 4.1112 2.1626 4.3810 2.2300 8.0 2.7205 1.9215 2.9445 2.0046
9.0 4.3047 2.1877 4.5744 2.2602 9.0 2.8425 1.9426 3.0930 2.0268

10.0 4.4952 2.2119 4.7622 2.2892 10.0 2.9568 1.9617 3.2381 2.0483
20.0 6.2720 2.4162 6.4234 2.5246 20.0 4.0618 2.1319 4.4480 2.2292

Table 3
Values of local skin friction coefficientCf for K = 0, Pr = 0.7 and various values ofλ

x λ

−4.0 −3.0 −2.0 −1.0 −0.5 0.0 0.74 0.75 1.0 2.0 5.0

0◦ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10◦ 0.0801 0.1806 0.2662 0.3438 0.3804 0.4160 0.4669 0.4675 0.4843 0.5495 0.7318
20◦ 0.1149 0.3261 0.5000 0.6564 0.7301 0.8014 0.9031 0.9045 0.9380 1.0682 1.4314
30◦ 0.4024 0.6718 0.9098 1.0211 1.1284 1.2813 1.2833 1.3335 1.5284 2.0700
40◦ 0.3704 0.7535 1.0790 1.2292 1.3733 1.5775 1.5802 1.6471 1.9061 2.6223
50◦ 0.7181 1.1434 1.3350 1.5172 1.7737 1.7771 1.8607 2.1832 3.0688
60◦ 0.5295 1.0866 1.3246 1.5477 1.8580 1.8621 1.9627 2.3481 3.3962
70◦ 0.8929 1.1889 1.4583 1.8260 1.8307 1.9486 2.3967 3.5988
80◦ 0.5280 0.9190 1.2480 1.6800 1.6855 1.8216 2.3326 3.6779
90◦ 0.4813 0.9154 1.4289 1.4352 1.5915 2.1668 3.6417

100◦ 0.4308 1.0847 1.0922 1.2732 1.9166 3.5038
110◦ 0.6543 0.6637 0.8831 1.6049 3.2819
120◦ 0.0380 0.4220 1.2579 2.9950

Table 4
Values of local heat transfer coefficientQw(x) for K = 0, Pr = 0.7 and various values ofλ

x λ

−4.0 −3.0 −2.0 −1.0 −0.5 0.0 0.74 0.75 1.0 2.0 5.0

0◦ 0.6534 0.7108 0.7529 0.7870 0.8021 0.8162 0.8354 0.8357 0.8463 0.8648 0.9230
10◦ 0.6440 0.7040 0.7470 0.7818 0.7970 0.8112 0.8307 0.8309 0.8371 0.8603 0.9188
20◦ 0.6150 0.6845 0.7305 0.7669 0.7827 0.7974 0.8173 0.8176 0.8239 0.8476 0.9070
30◦ 0.6507 0.7027 0.7422 0.7591 0.7746 0.7955 0.7958 0.8024 0.8269 0.8878
40◦ 0.5977 0.6628 0.7076 0.7261 0.7429 0.7652 0.7655 0.7725 0.7983 0.8614
50◦ 0.6080 0.6624 0.6836 0.7022 0.7267 0.7270 0.7345 0.7621 0.8281
60◦ 0.5309 0.6055 0.6309 0.6525 0.6800 0.6803 0.6887 0.7186 0.7884
70◦ 0.5334 0.5668 0.5934 0.6253 0.6257 0.6352 0.6683 0.7426
80◦ 0.4342 0.4879 0.5236 0.5627 0.5632 0.5742 0.6117 0.6914
90◦ 0.3796 0.4398 0.4920 0.4926 0.5060 0.5495 0.6356

100◦ 0.3263 0.4120 0.4127 0.4304 0.4826 0.5758
110◦ 0.3179 0.3192 0.3458 0.4121 0.5130
120◦ 0.1276 0.2442 0.3391 0.4477
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Table 5
Values of local skin friction coefficientCf for K = 0, Pr = 7 and various values ofλ

x λ

−7.0 −5.0 −3.0 −2.0 −1.0 0.0 1.07 1.08 2.0 5.0 10.0

0◦ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10◦ 0.0676 0.1872 0.2856 0.3309 0.3743 0.4160 0.4591 0.4595 0.4955 0.6071 0.7788
20◦ 0.3415 0.5396 0.6304 0.7176 0.8014 0.8877 0.8885 0.9605 1.1833 1.5256
30◦ 0.4311 0.7329 0.8700 1.0020 1.1284 1.2584 1.2595 1.3675 1.7009 2.2115
40◦ 0.8389 1.0242 1.2030 1.3733 1.5474 1.5490 1.6931 2.1361 2.8115
50◦ 0.8325 1.0713 1.3008 1.5172 1.7367 1.7387 1.9194 2.4707 3.3058
60◦ 0.9922 1.2808 1.5477 1.8147 1.8171 2.0350 2.6933 3.6815
70◦ 0.7635 1.1323 1.4583 1.7769 1.7798 2.0363 2.8002 3.9326
80◦ 0.8416 1.2480 1.6263 1.6296 1.9273 2.7952 4.0603
90◦ 0.3429 0.9154 1.3719 1.3759 1.7195 2.6900 4.0726

100◦ 0.4308 1.0272 1.0319 1.4313 2.5026 3.9829
110◦ 0.6018 0.6079 1.0870 2.2559 3.8079
120◦ 0.0153 0.7152 1.9757 3.5654

Table 6
Values of local heat transfer coefficientQw(x) for K = 0, Pr = 7 and various values ofλ

x λ

−7.0 −5.0 −3.0 −2.0 −1.0 0.0 1.07 1.08 2.0 5.0 10.0

0◦ 1.5006 1.6645 1.7795 1.8281 1.8723 1.9130 1.9534 1.9568 1.9862 2.0808 2.2119
10◦ 1.4779 1.6489 1.7656 1.8148 1.8596 1.9008 1.9415 1.9418 1.9746 2.0699 2.2017
20◦ 1.6043 1.7263 1.7771 1.8236 1.8662 1.9082 1.9086 1.9420 2.0394 2.1731
30◦ 1.5281 1.6608 1.7147 1.7644 1.8095 1.8536 1.8540 1.8890 1.9895 2.1266
40◦ 1.5672 1.6267 1.6815 1.7307 1.7780 1.7784 1.8156 1.9210 2.0627
50◦ 1.4411 1.5110 1.5744 1.6297 1.6818 1.6823 1.7226 1.8348 1.9824
60◦ 1.3629 1.4412 1.5062 1.5654 1.5659 1.6108 1.7320 1.8871
70◦ 1.1683 1.2775 1.3590 1.4291 1.4297 1.4809 1.6140 1.7780
80◦ 1.0702 1.1848 1.2726 1.2733 1.3338 1.4828 1.6569
90◦ 0.7502 0.9735 1.0947 1.0956 1.1707 1.3406 1.5258

100◦ 0.6791 0.8913 0.8926 0.9923 1.1901 1.3866
110◦ 0.6462 0.6485 0.7992 1.0349 1.2414
120◦ 0.1590 0.5907 0.8788 1.0921

Table 7
Values of local skin friction coefficientCf for K = 1, Pr = 0.7 and various values ofλ

x λ

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 0.76 0.77 1.0 2.0 5.0

0◦ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10◦ 0.0629 0.1618 0.2394 0.3112 0.3768 0.4403 0.4884 0.4890 0.5032 0.5636 0.7341
20◦ 0.0727 0.2852 0.4439 0.5890 0.7210 0.8484 0.9446 0.9458 0.9742 1.0948 1.4348
30◦ 0.3308 0.5804 0.8029 1.0030 1.1949 1.3394 1.3413 1.3840 1.5645 2.0720
40◦ 0.2441 0.6160 0.9252 1.1969 1.4549 1.6482 1.6507 1.7075 1.9578 2.6196
50◦ 0.5112 0.9307 1.2815 1.6087 1.8516 1.8547 1.9259 2.2255 3.0576
60◦ 0.7932 1.2409 1.6432 1.9375 1.9412 2.0270 2.3859 3.3727
70◦ 1.0617 1.5523 1.9013 1.9058 2.0065 2.4249 3.5596
80◦ 0.7221 1.3357 1.7464 1.7515 1.8682 2.3470 3.6209
90◦ 0.9942 1.4826 1.4886 1.6230 2.1644 3.5665

100◦ 0.5063 1.1244 1.1314 1.2878 1.8968 3.4122
110◦ 0.6818 0.6906 0.8813 1.5695 3.1786
120◦ 0.0436 0.4062 1.2125 2.8872

separation and that separation can be completely suppressed
in the region 0◦ � x � 120◦ for sufficiently large values
of λ (> 0). Moreover, the numerical solutions indicate that
for K = 0 the value ofλ, which first gives no separation
lies between 0.74 and 0.75 forPr = 0.7, while the value

of λ (> 0) lies between 1.07 and 1.08 forPr = 7. When
K = 1, the value ofλ (> 0) lies between 0.76 and 0.77 for
Pr = 0.7, while it lies between 1.09 and 1.10 forPr = 7.
This value of λ increases as the material parameterK

increases.
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Table 8
Values of local heat transfer coefficientQw(x) for K = 1, Pr = 0.7 and various values ofλ

x λ

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 0.76 0.77 1.0 2.0 5.0

0◦ 0.5905 0.6418 0.6770 0.7064 0.7312 0.7536 0.7697 0.7699 0.7745 0.7935 0.8425
10◦ 0.5810 0.6352 0.6713 0.7013 0.7264 0.7491 0.7653 0.7655 0.7701 0.7893 0.8386
20◦ 0.5504 0.6159 0.6550 0.6867 0.7128 0.7362 0.7529 0.7531 0.7579 0.7774 0.8276
30◦ 0.5816 0.6274 0.6623 0.6904 0.7151 0.7326 0.7328 0.7378 0.7581 0.8097
40◦ 0.5233 0.5866 0.6277 0.6589 0.6858 0.7045 0.7047 0.7100 0.7314 0.7849
50◦ 0.5269 0.5813 0.6180 0.6481 0.6686 0.6689 0.6746 0.6975 0.7538
60◦ 0.5195 0.5667 0.6021 0.6252 0.6254 0.6318 0.6569 0.7166
70◦ 0.5029 0.5473 0.5742 0.5746 0.5818 0.6098 0.6738
80◦ 0.4191 0.4826 0.5158 0.5162 0.5248 0.5568 0.6261
90◦ 0.4052 0.4497 0.4501 0.4607 0.4984 0.5741

100◦ 0.3020 0.3746 0.3752 0.3893 0.4355 0.5187
110◦ 0.2857 0.2868 0.3087 0.3691 0.4607
120◦ 0.1163 0.2091 0.3004 0.4011

Table 9
Values of local skin friction coefficientCf for K = 1, Pr = 7 and various values ofλ

x λ

−10.0 −8.0 −6.0 −4.0 −2.0 −1.0 0.0 1.09 1.10 2 5 10

0◦ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10◦ 0.0532 0.1635 0.2261 0.3025 0.3728 0.4048 0.4403 0.4791 0.4794 0.5106 0.6111 0.7681
20◦ 0.2954 0.4178 0.5718 0.7130 0.7772 0.8484 0.9260 0.9267 0.9891 1.1898 1.5029
30◦ 0.5422 0.7772 0.9909 1.0876 1.1949 1.3117 1.3128 1.4064 1.7072 2.1745
40◦ 0.8905 1.1804 1.3104 1.4549 1.6115 1.6129 1.7380 2.1382 2.7569
50◦ 0.8849 1.2599 1.4254 1.6087 1.8061 1.8079 1.9650 2.4641 3.2301
60◦ 1.2122 1.4177 1.6432 1.8836 1.8858 2.0755 2.6733 3.5812
70◦ 1.0212 1.2779 1.5523 1.8395 1.8420 2.0660 2.7621 3.8050
80◦ 0.9966 1.3357 1.6771 1.6801 1.9410 2.7356 3.9043
90◦ 0.5382 0.9942 1.4068 1.4103 1.7132 2.6070 3.8893

100◦ 0.5063 1.0436 1.0478 1.4030 2.3971 3.7764
110◦ 0.5995 0.6050 1.0379 2.1327 3.5862
120◦ 0.0126 0.6531 1.8443 3.3403

Table 10
Values of local heat transfer coefficientQw(x) for K = 1, Pr = 7 and various values ofλ

x λ

−10.0 −8.0 −6.0 −4.0 −2.0 −1.0 0.0 1.09 1.10 2 5 10

0◦ 1.3566 1.4847 1.5399 1.6118 1.6726 1.6986 1.7275 1.7583 1.7586 1.7826 1.8564 1.9617
10◦ 1.3385 1.4718 1.5265 1.5994 1.6610 1.6872 1.7165 1.7476 1.7479 1.7722 1.8465 1.9524
20◦ 1.4348 1.4879 1.5643 1.6283 1.6553 1.6856 1.7176 1.7179 1.7428 1.8188 1.9263
30◦ 1.4223 1.5057 1.5741 1.6027 1.6346 1.6683 1.6686 1.6947 1.7734 1.8839
40◦ 1.4220 1.4980 1.5292 1.5639 1.6001 1.6004 1.6281 1.7111 1.8255
50◦ 1.3092 1.3990 1.4343 1.4733 1.5132 1.5135 1.5437 1.6324 1.7522
60◦ 1.2742 1.3169 1.3624 1.4078 1.4082 1.4419 1.5385 1.6650
70◦ 1.1169 1.1737 1.2303 1.2842 1.2847 1.3234 1.4306 1.5653
80◦ 0.9961 1.0741 1.1419 1.1425 1.1888 1.3102 1.4547
90◦ 0.7481 0.8855 0.9796 0.9803 1.0386 1.1795 1.3352

100◦ 0.6288 0.7927 0.7938 0.8732 1.0412 1.2089
110◦ 0.5641 0.5660 0.6922 0.8986 1.0782
120◦ 0.0519 0.4930 0.7564 0.9454

Figs. 10–13 illustrate the variation of the separation point
xs with λ for K = 0 and 1 whenPr = 0.7 and 7, respectively.
It is seen that for each value ofK andPr there is a value
of λ (< 0) below which a boundary layer separation is not
possible. The reason is that forλ < 0 the opposing flow

is strong enough and the free convection boundary layer
would start at the positionx between 90◦ and 120◦ (see
Chiang et al. [20]) and for sufficiently small values ofλ =
λK (say), there comes a point where the flow of the free
stream upwards cannot overcome the tendency of the fluid
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Fig. 2. Variation of the local skin friction coefficientCf for K = 0, Pr = 0.7
and various values ofλ.

Fig. 3. Variation of the local heat transfer coefficientQw(x) for K = 0,
Pr = 0.7 and various values ofλ.

Fig. 4. Variation of the local skin friction coefficientCf for K = 0, Pr = 7
and various values ofλ.

Fig. 5. Variation of the local heat transfer coefficientQw(x) for K = 0,
Pr = 7 and various valuesλ.

Fig. 6. Variation of the local skin friction coefficientCf for K = 1,Pr = 0.7
and various values ofλ.

Fig. 7. Variation of the local heat transfer coefficientQw(x) for K = 1,
Pr = 0.7 and various values ofλ.
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Fig. 8. Variation of the local skin friction coefficientCf for K = 1, Pr = 7
and various values ofλ

Fig. 9. Variation of the local heat transfer coefficientQw(x) for K = 1,
Pr = 7 and various values ofλ.

Fig. 10. Variation of the boundary layer separation pointxs with λ for
K = 0 andPr = 0.7.

Fig. 11. Variation of the boundary layer separation pointxs with λ for
K = 0 andPr = 7.

Fig. 12. Variation of the boundary layer separation pointxs with λ for
K = 1 andPr = 0.7.

Fig. 13. Variation of the boundary layer separation pointxs with λ for
K = 1 andPr = 7.
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next to the sphere to move downwards under the action of
the buoyancy forces (see Merkin [21]). This is an unstable
situation and whether a boundary layer can exist at all on the
sphere for a value ofλ = λK(< 0) is still an open question.

We can show, following Merkin [21], that the separation
of the boundary layer will not occur forλ > 9

8. We see that
for y = 0 Eqs. (15) and (16) give

(1+ K)

(
∂3ψ

∂y3

)
y=0

+
(
λ + 9

4
cosx

)
sin2x = 0 (41)

Although (∂2ψ/∂y2)y=0 = 0 at x = xs, the streamwise
velocity componentu = (1/r)∂ψ/∂y will be positive near
y = 0 and so (∂3ψ/∂y3)y=0 � 0 at x = xs . We thus have
(λ + (9/4)cosx)sin2x � 0, which cannot hold in the range
0 � x � 120◦ for λ > 9/8.

5. Conclusions

In this paper we have theoretically studied the problem of
steady mixed convection boundary layer flow over a sphere
with constant temperature, which is immersed in a micropo-
lar fluid. Solutions of the transformed non-similar boundary
layer equations are obtained numerically using the Keller-
box method along with the Newton’s linearization technique.
We have sought to determine how the material parameterK,
the mixed convection parameterλ and the Prandtl number
Pr affect the flow and heat transfer characteristics as well as
the positionxs of the boundary layer separation. From this
study we can draw the following conclusions:

• an increase in the values of the material parameterK

leads to an increase of the local skin friction coefficient
Cf and a decrease of the local heat transfer coefficient
Qw(x)

• an increase in the value ofPr leads to a decrease of the
local skin friction coefficientCf and an increase of the
local heat transfer coefficientQw(x)

• an increase in the value ofK leads to an increase of the
value ofλ (< 0) below which a boundary layer solution
is not possible and to an increase of the value ofλ (> 0)
which first gives no separation
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